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SUMMARY

Numerical investigations of fully compressible turbulent channel flows are conducted. Two different
speeds of Mach numbers of 0.005 and 0.5 are separately taken into consideration to study mechanisms
of compressible turbulent flows and increments of temperatures of working fluids. For computing the
compressible low-speed turbulent flow efficiently, methods of Roe and preconditioning matching LES
methods are adopted. In addition, usage of dual time stepping and curved linear coordinates transformation
skills to stabilize transient situations and increase computing grids near the channel walls are performed.
As for an assignation of initial conditions, random velocity fluctuations are imposed on the mean velocity
distribution. The results show that the mean velocity distributions, root-mean-square values of fluctuating
velocities and mean Reynolds stresses have good agreements with the existing results. The increments
of temperatures of working fluids are remarkable for a Mach number of 0.5 and are also well consistent
with the existing results. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well recognized that most real flow phenomena belong to turbulent flows.
In addition to high-speed turbulent flows, recently some phenomena such as compressible

low-speed turbulent flows attract much attention as well, including acoustic noise induced by
compressible turbulent flows, flows in combustion chamber, natural convection induced by high

∗Correspondence to: Wu-Shung Fu, Department of Mechanical Engineering, National Chiao Tung University, 1001
Ta Hsueh Road, Hsinchu 30056, Taiwan.

†E-mail: wsfu@mail.nctu.edu.tw
‡Professor.

Copyright q 2008 John Wiley & Sons, Ltd.



ROE SCHEME WITH PRECONDITIONING METHOD 889

temperature difference, etc. Fortunately with the promotion of computer capability and improve-
ments in numerical schemes, the simulation of compressible turbulent flow inspite of high and low
speeds could be expected to be solved more realistically.

Compared with the numerical turbulent solvers of the Reynolds averaged Navier–Stokes equa-
tions and the direct numerical simulation (DNS), the method of large eddy simulation (LES),
which has merits of practicability and efficiency is more adaptable to be used in simulating time-
evolving turbulent flow. However, there is a critical problem of initial or inlet condition of flow
field, which should be seriously considered during the LES solver being executed. Therefore,
several methods of generation of initial condition used in the LES are proposed. In terms of the
initial condition there are three ways to obtain: the results of the DNS method, random fluctuations
imposed on theoretically mean velocities, and initial or inlet conditions matching with turbulent
correlation. Tong [1] used the DNS results obtained by Gavrilakis [2] as the initial condition
of LES method matching a modified Roe scheme to simulate a turbulent flow in a square duct.
The results of Tong [1] were compared well with the results obtained by the DNS method. Stolz
et al. [3] simulated channel flows of Re� =180 and Re� =590 by the LES method with approximate
deconvolution model, and they had good results with DNS and LES methods despite the initial
conditions obtained from the DNS method or the data from the LES at different parameters or
synthetic data with random fluctuations. However, it is not easy to obtain the adaptable results with
the DNS method as the initial condition of the LES method in practice except in special situations.
Lund et al. [4] developed a new method called random fluctuation inflow generation method to
generate reasonable inflow data used in the LES method as the initial condition. This method was
based on turbulent statistical properties and the inflow data generated by the method could be
conformed with turbulent correlations automatically. But the results obtained by the method were
slightly different from those obtained by the DNS method as the flow conditions of inlet and outlet
were assigned simultaneously. Klein et al. [5] used an autocorrelation function of turbulent flow to
develop a new method of generation of inlet or initial condition of a turbulent flow. Further the new
method matching the study investigated by Lund et al. [4] could be adapted for an inhomogeneous
turbulent flow. The results had good agreements with experimental results.

Besides, consideration of compressibility of fluid under low-speed turbulent flows is another
wrinkle. In this situation, the speed of the sound wave is much larger than that of the fluid flow.
Therefore, in an explicit numerical method, the time step limited by Courant–Friedrichs–Levy
condition should be extremely small and the convergence of calculation becomes difficult. In
an implicit numerical method, a stiff phenomenon easily occurs in the matrix used in solving
processes, which causes the situation to be solved only with great difficulty. Briley et al. [6] adopted
a preconditioning method to add into an implicit method to improve the convergence of Navier–
Stokes equations under a lowMach number situation. Turkel [7] developed a preconditioning matrix
and discussed the applications of this method into incompressible and compressible flows. Choi
and Merkel [8] added a preconditioning matrix into Euler equations and successfully improved the
convergent problems caused by the stiff phenomenon and factorization error in an inviscid lowMach
number flow (Ma no.=0.05) when an implicitly numerical method was used. Choi and Merkel [9]
continuously investigated the former problems in [8] and proposed an adaptable preconditioning
matrix to resolve the calculating convergence of low-speed viscous flows. For effectively resolving
compressible flows troubles, Roe [10] proposed an ingenious method to define averaged variables
that were used to calculate fluxes between interfaces of computational grids, and successfully
resolved the problem of discontinuity happening at the interface of computational grids. This
method has been widely applied to the problem of compressible flow recently. Weiss and Smith [11]
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extended the research of Choi and Merkel [9], and applied the Roe and preconditioning methods
into three-dimensional (3-D) Navier–Stokes equations. Besides, a computational process of dual
time stepping was utilized to calculate transient flows under a low Mach number situation. Dennis
et al. [12] added multigrid method into OVERFLOW program to improve convergent efficiency,
and used Roe and preconditioning methods simultaneously to calculate compressible low-speed
flows. Shishir et al. [13] continuously added the dual time-stepping process to compute transient
flows. The results showed that the application of preconditioning into low-speed compressible flows
remarkably improved both accuracy and convergent efficiency.

It is difficult to obtain the initial or inlet condition of LES method used in compressible
turbulent flows under low-speed conditions, and there is comparatively little literature adopting
the methods of LES and preconditioning simultaneously to investigate the compressible low-
speed turbulent flows. Lessani et al. [14] applied the preconditioning method, with the multigrid
skill into the LES method to simulate channel and cavity flows. The results showed that the
convergence speed is increased 4–7 times compared with an explicit method. Xu et al. [15] used
the finite volume and LES methods to calculate a pipe flow. The results compared with the results
of experimental and DNS methods showed good agreements. Alkishriwi et al. [16] calculated
channel and circular flows by the LES method matching the methods of preconditioning and
multigrid under different Mach numbers and time intervals. This synthetic method had wonderful
efficiency and improved the calculating convergence of low Mach numbers problem remarkably.
The convergent speed of this method was quicker than that of the method of the fifth-order
Runge–Kutta by about 4–60 times. Tong [1] also used Roe and LES methods, but without the
preconditioning method to simulate duct flows, and improved a problem of excessively large
dissipation which happens in the LES method. However, to the best of the authors’ knowledge,
the simulation of compressible low-speed turbulent flows, which usually occur in many industrial
problems, by the LES method matching Roe and preconditioning methods were preformed with
difficulty.

Therefore, the aim of this study is to propose an appropriate method in which the combination
of the Roe, preconditioning, and LES methods is performed to investigate compressible low
(Ma no.=0.005) and high (Ma no.=0.5) speed turbulent channel flows. Random fluctuations
imposed on the theoretical mean velocities are assumed as the initial condition. For stabilizing
transient situations, a method of dual time stepping is conducted. Besides, in order to obtain
accurate results of extremely near-wall region, a curved linear coordinates transformation is used,
and five computation grids are distributed within the viscous sublayer region (x+

2 <10). The results
show that the distributions of the mean velocity and the turbulent correlations are well consistent
with the results of Kim et al. [17] under both low- and high-speed situations. Besides, in the
high-speed situation the temperatures of fluids are apparently raised near the channel wall region,
and the results have good agreement with the existing results of Lenormand et al. [18].

2. PHYSICAL MODEL

A turbulent channel flow in which the compressibility and viscosity of fluid are taken into consid-
eration simultaneously is investigated . The LES method is adopted to describe the turbulent flow
and the corresponding physical model is shown in Figure 1. The streamwise, vertical, and spanwise
directions are x1, x2, and x3, respectively, and the corresponding velocities are u1, u2, and u3,
respectively. The length, height, and width are l1, l2, and l3, respectively.
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Figure 1. Physical model.

For facilitating the analysis, the following assumptions are made:

(1) The fluid is air and ideal gas.
(2) The effect of gravity is neglected.

According to Tong [1], the governing equations are expressed as follows:

�U
�t

+ �F1
�x1

+ �F2
�x2

+ �F3
�x3

=0 (1)

The quantities included in U and Fi are separately shown in the following equations:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�̄

�̄ũ1

�̄ũ2

�̄ũ3

�̄ẽ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2)

and

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̄ũi

�̄ũi ũ1+ P̃�i1−(�+2�̄�t ) Ãi1

�̄ũi ũ2+ P̃�i2−(�+2�̄�t ) Ãi2

�̄ũi ũ3+ P̃�i3−(�+2�̄�t ) Ãi3

(�̄ẽ+ P̃)ũi −(�̄+2�̄�t ) Ãi j ũ j −
[
�̄+ �̄

�t
Prt

]
�T̃
�xi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∀i=1,2,3 (3)

where

Ãi j = �ũ j

�xi
+ �ũ j

�xi
− 2

3
(∇ · ũ)�i j

and the filtered ideal gas is written as

P̃= �̄RT̃ (4)
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Sutherland’s law is adopted to evaluate the viscosity shown as follows:

�=�0

(
T

T0

)2/3 T0+110

T +110
(5)

where �0 and T0 are 1.85×10−5Ns/m2 and 298.0592K, respectively.
According to the Smagorinsky model, �t is expressed as follows:

�t =C�2|S̄| (6)

where �=(�1�2�3)
1/3, |S̃|=

√
2S̃i j S̃i j

S̃i j = 1

2

(
�ũ j

�xi
+ �ũ j

�xi

)
and Prt =0.71.

The parameter C in Equation (6) is determined by the Van Driest damping function of
Smagorinsky model and expressed as follows:

C=0.01

{
1−exp

[
−

(
d+

25

)]}
(7)

Where d+ =�u�d/�,u� is a friction velocity and expressed in terms of
√

�w/�, and d is the
distance from the wall.

3. NUMERICAL METHOD

A situation of fully developed compressible turbulent flow described by the LES model is inves-
tigated. In order to validate the results of the present study with those of the previous study by
Kim et al. [17], the magnitude of the height of channel is designed as a characteristic length
and the same magnitude of Reynolds number Re� used in the previous study of Kim et al. [17]
is selected. In the streamwise direction, the length used for computation should be longer than
the length of streak growing in the turbulent flow and is about 3.82 times the magnitude of the
height. Furthermore, for economizing computational memory and time, the length of the channel
is periodically used until a fully turbulent flow is formed. Based on Kazishima [19], for satisfying
the characteristics of 3-D eddy motions of the turbulent flow, the width used for computation in
the spanwise direction is about 1.92 times the magnitude of the height. Periodical conditions are
held on the both sides of this width.

Except the usage of Roe and the preconditioning methods, two effective methods are used to
avoid the occurrence of inefficiency and inaccuracy in computing processes. One is the method
of 3-D curvilinear coordinates (�,	,
) to be used, then five grids are distributed within x+

2 =10
region. A dual time-stepping process is the other one. The original governing equation (1) is then
transformed into the following equation:

�
�Ūp

��
+ �Ū

�t
+ �F̄1

��
+ �F̄2

�	
+ �F̄3

�

=0 (8)
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where � is the preconditioning matrix derived by Weiss et al. [11], and Ūp is the primitive form
[P̃, ũ1, ũ2, ũ3, T̃ ]/J in which J is the Jacobian matrix. � and t are the artificial and physical
times, respectively, Ū is the conservative form of (�̄, �̄ũ1, �̄ũ2, �̄ũ3, �̄ẽ)/J . According to Dennis
et al. [12], � the preconditioning parameter is chosen as �=max(min(M2,1.0),�min), where M
is the local Mach number and �min≈3M2∞.

Discrete Equation (8): The terms of �Ūp/�� and �Ū/�t are differentiated by first-order forward
difference and second-order backward difference, respectively, and the terms of �F̄1/��, �F̄2/�	,
and �F̄3/�
 are differentiated by a central difference, the following equation can be obtained:

�
Ū k+1
p −Ū k

p

��
+ 3Ū k+1−4Ū n+Ū n−1

2�t
+ 1

��
(F̄k+1

1i+1/2, j,k
− F̄k+1

1i−1/2, j,k
)

+ 1

�	
(F̄k+1

2i, j+1/2,k
− F̄k+1

2i, j−1/2,k
)+ 1

�

(F̄k+1

3i, j,k+1/2
− F̄k+1

3i, j,k−1/2
)=0 (9)

In which superscripts of k and n indicate iteration numbers of artificial time and real time,
respectively. The real-time counts a proceeding step when the term of artificial time �Ūp/�� is
convergent to zero, Equation (9) automatically transfers into the Navier–Stokes equation and the
magnitudes at the iteration number of (k+1) of the artificial time in Equation (9) substantially
become the magnitudes of the proceeding step of (n+1) of the real time.

Afterward the terms of Ū k+1 and F̄k+1
i in Equation (9) are necessary to be linearized and

expressed as follows, respectively

Ū k+1=Ū k+M�Ūp (10)

where M=�Ū/�Ūp and �Ūp=Ū k+1
p −Ū k

p

F̄k+1
1 = F̄k

1 +Ap�Ūp (11)

Where Ap=�F̄k
1 /�Ūp is the flux jacobian and the same methods of Bp=�F̄k

2 /�Ūp and
Cp=�F̄k

3 /�Ūp are used in linearization of F̄ K+1
2 and F̄ K+1

3 , respectively.
Substituting Equations (10) and (11) into Equation (9), the following equation is obtained:

�
�Ūp

��
+ 3(Ū k+M�Ūp)−4Ū n+Ū n−1

2�t

+��(F̄
k
1 +Ap�Ūp)+�	(F̄

k
2 +Bp�Ūp)+�
(F̄

k
3 +Cp�Ūp)=0 (12)

Where ��, �	, and �� are central-difference operators. Equation (12) can be rearranged as follows:[
�

I

��
+M

3

2�t
+(��Ap+�	Bp+�
Cp)

]
�Ūp= Rk (13)

Where

Rk =−
(
3Ū k−4Ū n+Ū n−1

2�t

)
−(�� F̄

k
1 +�	 F̄

k
2 +�
 F̄

k
3 )

I is the unit matrix

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:888–910
DOI: 10.1002/fld



894 W.-S. FU ET AL.

Dividing � in both sides, the following equation is obtained:[
I

��
+�−1M

3

2�t
+�−1(��A

k
p+�	B

k
p +�
C

k
p)

]
�Ūp=�−1Rk (14)

The solver of Equation (15) is the LUSGS implicit method proposed by Yoon et al. [20] which is
used to solve Equation (14).

Ãp = �−1Ak
p

B̃p = �−1Bk
p

C̃p = �−1Ck
p

(15)

and divide Ãp, B̃p, and C̃p into two parts, respectively

Ãp = Ã+
p + Ã−

p

B̃p = B̃+
p + B̃−

p

C̃p = C̃+
p +C̃−

p

(16)

where

Ã±
p = 1

2 ( Ãp±|� Ã|I )
B̃±
p = 1

2 (B̃p±|�B̃ |I )
C̃±
p = 1

2 (C̃p±|�C̃ |I )
(17)

� Ã,�B̃, and �C̃ are the largest eigenvalues of Ãp, B̃p, and C̃p, respectively.
Substituting Equations (15) and (17) into Equation (14), we obtain the following equation:[

I

��
+�−1M

3

2�t
+��( Ã

+
p + Ã−

p )+�	(B̃
+
p + B̃−

p )+�
(C̃
+
p +C̃−

p )

]
�Ūp=�−1Rk (18)

The convective terms of ��( Ã+
p + Ã−

p ) can be solved by a high-order scheme as the following
equation:

��( Ã
+
p + Ã−

p )=�−
� Ã+

p +�+
� Ã−

p = Ã+
p,i − Ã+

p,i−1

��
+ Ã−

p,i+1− Ã−
p,i

��
(19)

where the backward difference approximation �−
� is adopted for Ã+

p and the forward difference

approximation �+
� is adopted for Ã−

p .
Substituting Equation (19) into (18), the following equation can be derived as:[

I

��
+�−1M

3

2�t
+ Ã+

p,i − Ã+
p,i−1

��
+ Ã−

p,i+1− Ã−
p,i

��

+ B̃+
p, j − B̃+

p, j−1

�	
+ B̃−

p, j+1− B̃−
p, j

�	
+ C̃+

p,k−C̃+
p,k−1

�

+ C̃−

p,k+1−C̃−
p,k

�


]
�Ūp=�−1Rk (20)
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Equation (20) can be arranged as follows:

(L+D+U )�Ūp=�−1Rk (21)

Where

L=−
[
1

��
( Ã+

p )i−1, j,k+ 1

�	
(B̃+

p )i, j−1,k+ 1

�

(C̃+

p )i, j,k−1

]
(22)

D = I

��
+�−1M

3

2�t
+

[
1

��
(( Ã+

p )i, j,k−( Ã−
p )i, j,k)

+ 1

�	
((B̃+

p )i, j,k−(B̃−
p )i, j,k)+ 1

�

((C̃+

p )i, j,k−(C̃−
p )i, j,k)

]
(23)

U =
[
1

��
( Ã−

p )i+1, j,k+ 1

�	
(B̃−

p )i, j+1,k+ 1

�

(C̃−

p )i, j,k+1

]
(24)

As for the computation of Rk =−((3Ū k−4Ū n+Ū n−1)/2�t)−(�� F̄
k
1 +�	 F̄k

2 +�
 F̄
k
3 ) in right-

hand side (RHS) of Equation (21), the terms of Fi in Equation (3) based on Cartesian coordinates
can be divided into two parts. One is the inviscid term Finviscid.

Finviscid=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̄ũi

�̄ũi ũ1+ P̄�i1

�̄ũi ũ2+ P̄�i2

�̄ũi ũ3+ P̄�i3

(�̄ẽ+ P̄)ũi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(25)

The other is viscous term Fviscous.

Fviscous=−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

(�+2�̄�t ) Ãi1

(�+2�̄�t ) Ãi2

(�+2�̄�t ) Ãi3

(�̄+2�̄�t ) Ãi j ũ j +
[
�̄+ �̄

�t
Prt

]
�T̃
�xi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(26)

The Roe upwind difference scheme [10] is employed in discretion of the term of Finviscid at the
cells interface (i+ 1

2 ) and expressed as follows at a low Mach number situation:

Finviscid,i+1/2= 1
2 (FR+FL)− 1

2ε{|�−1Ap|�Up} (27)

In which ε is less than 0.1 and appropriate for a turbulent flow [1].
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The high-order MUSCL scheme proposed by Abalakin et al. [21] is used to compute
Equation (27), and the related derivations are indicated as follows:

�Up=uLi+1/2−uR
i+1/2 (28)

uLi+1/2=ui + 1
2�u

L
i+1/2 (29)

uR
i+1/2=ui − 1

2�u
R
i+1/2 (30)

�uLi+1/2 = (1−�)(ui+1−ui )+�(ui −ui−1)+
c(−ui−1+3ui −3ui+1+ui+2)

+
d(−ui−2+3ui−1−3ui +ui+1) (31)

�uR
i+1/2 = (1−�)(ui+1−ui )+�(ui+2−ui+1)

+
c(−ui−1+3ui −3ui+1+ui+2)+
d(−ui +3ui+1−3ui+2+ui+3) (32)

Where �, 
c, and 
d are tabulated in Table I. The fifth-order scheme is adopted to reduce the
dissipation. When a high-order scheme is executed, a limiter function is usually used to suppress
occurrence of numerical oscillations. However, to prevent the decay of the turbulent intensities of
flow, the limiter function is then not adopted. The derivative terms of Ãi j =�ũ j/�xi +�ũ j/�xi −
2
3 (∇ · ũ)�i j in Equation (26) are computed by the fourth-order central difference

�ũ
�x

= ũi−2−8ũi−1+8ũi+1− ũi+2

12�x
+o(�x4) (33)

In order to compute the terms of F̄k
1 , F̄

k
2 , and F̄k

3 of Rk shown in Equation (21) in the curved linear
coordinates (�,	,
), the F̄k

1 , F̄k
2 , and F̄k

3 can be expressed in terms of Fi indicated as follows:

F̄k
1 = (�x1F1+�x2F2+�x3F3)/J

F̄k
2 = (	x1F1+	x2F2+	x3F3)/J

F̄k
3 = (�x1F1+�x2F2+�x3F3)/J

(34)

Table I. The parameters of the MUSCL scheme.

� 
c 
d Order

1
3 0 0 3
1
3 − 1

6 0 4
1
3 0 − 1

6 4
1
3 − 1

10 − 1
15 5
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then

Rk = −
(
3Ū k−4Ū n+Ū n−1

2�t

)
−{��[(�x1F1+�x2F2+�x3F3)/J ]

+�	[(	x1F1+	x2F2+	x3F3)/J ]+�
[(�x1F1+�x2F2+�x3F3)/J ]}
Substituting Equation (34) into Rk of Equation (21), Equation (21) can be expressed as follows:

L(i−1, j,k)�U
k
p,(i−1, j,k)+L(i, j−1,k)�U

k
p,(i, j−1,k)+L(i, j,k−1)�U

k
p,(i, j,k−1)+D(i, j,k)�U

k
p,(i, j,k)

+U(i+1, j,k)�U
k
p,(i+1, j,k)+U(i, j+1,k)�U

k
p,(i, j+1,k)+U(i, j,k+1)�U

k
p,(i, j,k+1)=�−1Rk

(i, j,k) (35)

Based on Yoon et al. [20] and modification, Equation (21) could be expressed as follows:

(L+D)D−1(D+U )�Ū k
p =�−1Rk (36)

The solving procedures of Equation (36) are briefly shown in the following processes:

1. Derive the following equations to obtain forward sweep process

(L+D)�U∗
p =�−1Rk (37)

Where �U∗
p =D−1(D+U )�Ū k

p
Equation (37) can be rearranged as the following equations:

L�U∗
p +D�U∗

p =�−1Rk (38)

D�U∗
p =�−1Rk−L�U∗

p (39)

Equation (39) can be solved as follows:

�U∗
p =D−1(�−1Rk−L�U∗

p ) (40)

Equation (40) can be expanded as the following equation to execute the forward sweep
process

�U∗
p,(i, j,k) = D(i, j,k)[�−1Rk

(i, j,k)−L(i−1, j,k)�U
∗
p,(i−1, j,k)

−L(i, j−1,k)�U
∗
p,(i, j−1,k)−L(i, j,k−1)�U

∗
p,(i, j,k−1)] (41)

When i=1 or j =1 or k=1, the �U∗
p in RHS can be obtained from boundary conditions.

2. Derive the following equations to obtain backward sweep process. �Uk
p in Equation (37) can

be expressed as the following equations:

(D+U )�Ū k
p =D�U∗

p (42)

Equation (42) can be rearranged as the following equations:

�Ū k
p =�U∗

p −D−1U�Ū k
p (43)
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�Ū k
p can be expanded and solved as the following equations:

�Uk
p,(i, j,k) = �U∗

p,(i, j,k)−D−1
(i, j,k)[U(i+1, j,k)�U

k
p,(i+1, j,k)

+U(i, j+1,k)�U
k
p,(i, j+1,k)+U(i, j,k+1)�U

k
p,(i, j,k+1)] (44)

When i=nx or j =ny or k=nz, the �Up in RHS can be obtained from boundary conditions.
3. Then Ū k+1

p can be solved as follows:

Ū k+1
p =Ū k

p +�Ū k
p

4. Repeat step 1 to step 3 until (Ū k+1
p −Ū k

p )/��≈0. Then Ū n+1
p =Ū k+1

p , the next time step

Ū n+1
p can be obtained.

The adiabatic and no-slip conditions are adopted on the wall in case A tabulated in Table II. The
equations are given as follows:

P̃(i,0,k) = P̃(i,1,k)

ũ1(i,0,k) = −ũ1(i,1,k)

ũ2(i,0,k) = −ũ2(i,1,k)

ũ3(i,0,k) = −ũ3(i,1,k)

T̃ (i,0,k) = T̃ (i,1,k)

(45)

The isothermal and no-slip conditions are adopted on the wall in case B tabulated in Table III.
The equations are given as follows:

P̃(i,0,k) = P̃(i,1,k)

ũ1(i,0,k) = −ũ1(i,1,k)

ũ2(i,0,k) = −ũ2(i,1,k)

ũ3(i,0,k) = −ũ3(i,1,k)

T̃ (i,0,k) = 2Tfix− T̃ (i,1,k)

(46)

Table II. Computed parameters combinations (case A).

Parameters Magnitudes

Mean Mach number, ū
c 0.005

Mean streamwise velocity, ū 1.51m/s
Average friction velocity, u� 0.11248m/s
Grids distribution, i× j×k 64×64×64
l×m×h 0.192×0.096×0.05m3

Eddy turnover time, te= 0.5h
u�

0.222s
Initial temperature 298.05K
Time interval, �t 5×10−4 s
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Table III. Computed parameters combinations (case B).

Parameters Magnitudes

Average Mach numbers, ū
c 0.5

Average streamwise velocity, ū 157.06m/s
Average friction velocity, u� 11.7412m/s
Grid, i× j×k 64×64×64
l×m×h 0.00183936×0.000091968×0.000479m3

Eddy turnover time, te= 0.5h
u�

2.04×10−5 s
Initial temperature 298.05K
Time interval, �t 1×10−7 s

1

0
wall

Figure 2. The grid distribution on the wall.

Where Tfix is wall temperature with a constant of 298.0592K. 0 indicates the ghost cell and 1
indicates the cell nearest the wall. The relative positions are shown in Figure 2.

The computational length along the streamwise direction is periodically used, then the inlet and
the outlet conditions can be expressed as the following equations, respectively.

P̃(0, j,k) = P̃(nx, j,k)

ũ1(0, j,k) = ũ1(nx, j,k)

ũ2(0, j,k) = ũ2(nx, j,k)

ũ3(0, j,k) = ũ3(nx, j,k)

T̃ (0, j,k) = T̃ (nx, j,k)

(47)

P̃(nx+1, j,k) = P̃(1, j,k)

ũ1(nx+1, j,k) = ũ1(1, j,k)

ũ2(nx+1, j,k) = ũ2(1, j,k)

ũ3(nx+1, j,k) = ũ3(1, j,k)

T̃ (nx+1, j,k) = T̃ (1, j,k)

(48)

0 indicates the cell at the inlet and nx+1 indicates the cell at the outlet. The relative positions are
indicated in Figure 3.

The pressure gradient is the driving force that causes the channel flow to flow continuously. The
local pressure gradient of �P̃(i, j,k)/�x1 includes two parts. One is the mean pressure gradient
of �P̃mean/�x1 which mainly drives the flow, and the other is the fluctuating pressure gradient of
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10

streamwise  

nx+1nx

OutletInlet

Figure 3. The grid distributions in the inlet and the outlet.

�P̃p/�x1 which is variable. The relationships of the above pressure gradients can be expressed as
follows:

�P̃
�x1

= �P̃mean

�x1
+ �P̃p

�x1
=�+ �P̃p

�x1
(49)

� is a source term in computing processes and the periodic pressure conditions at the inlet and
outlet are indicated as follows:

P̃p(0, j,k)= P̃p(nx, j,k) (50)

P̃p(nx+1, j,k)= P̃p(1, j,k) (51)

The mass flow rate in the channel flow is not easily kept conservatively due to the viscous
friction along the walls and the numerical dissipation. Therefore, Equation (52) derived by Xu
et al. [15] is adopted to adjust the magnitude of � to keep the mass flow rate constant during
computation.

�n+1=�n− 1

�t

[(
ṁ

AC

)0

−2

(
ṁ

AC

)n

+
(

ṁ

AC

)n−1
]

(52)

where AC is the cross section area of the channel and �t is the physical time interval, and ṁ is
the mass flow rate of the channel flow.

4. RESULTS AND DISCUSSION

In this work, air is the working fluid and Reynolds number Re� =u��/� is assigned and equal
to 180. In order to investigate the flow mechanisms of fully compressible turbulent flow and the
increments of temperatures of the working fluids, two different mean velocities of 0.005 (case A)
and 0.5 (case B) Mach numbers of the flow are selected, but the Reynolds numbers of the both
cases are the same.

The streamwise x1 and spanwise x3 directions are periodical situations to prevent the correlations
in the above two directions from being interrupted, the lengths suggested by Kazishima [19] in
the above two directions are about 1382.4�+ =(3.848l2) and 691.2�+ =(1.92l2), respectively.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:888–910
DOI: 10.1002/fld



ROE SCHEME WITH PRECONDITIONING METHOD 901

Influences of the wall effect in a turbulent flow are apparent, then the density of grid distribution
in the x2 direction near the wall is increased by a curved linear coordinates transformation method
and the related equation indicating the position of the grid is shown in Equation (53).

x2=h
(2�+�)

(
�+1

�−1

)(	−�)/(1−�)

+2�−�

(2�+1)

[
1+

(
�+1

�−1

)(	−�)/(1−�)
] (53)

In which �=0.5 means the densities of grid distribution near both top and bottom walls are
equal. The more the magnitude of � closes to 1, the more the difference of the intervals of grids
is remarkable, and �=1.1 is assigned. As a result, the smallest magnitude of grid �x+

2 which
is closest to the channel wall is equal to 0.84, and the largest magnitude of grid �x+

2 is located
at the center and equal to 9.39. As for the other two directions of x1 and x3, the uniform grid
distributions are selected and the magnitudes of the two intervals are �x+

1 =21.6 and �x+
3 =10.8,

respectively. The figure of grid distribution in x1 and x2 directions is shown in Figure 4, and the
grid distributions in x1, x2, and x3 directions are 64×64×64. The results of the situation of grid
distributions of 40×40×40 were executed, but the results of the situation of grid distributions of
64×64×64 are more accurate than those of 40×40×40 situation. Then the results of the grid
distributions of 64×64×64 are indicated solely. According to numerical tests, in order to maintain
the designed turbulent flow to flow continuously, computational time steps of an eddy turn over
time need to be more than 400 steps approximately. Therefore, the computational time intervals
�t of 5×10−4 s and 1×10−7 s are selected for A and B cases, respectively.

The initial conditions of velocities of u1, u2 and u3 used in the computation are shown in
Equation (54).

u1 = ū1+u1,max×�×R

u2 = u1,max×�×R

u3 = u1,max×�×R

(54)

x2

x1

Figure 4. Grid distributions.
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2x

1x
 

Figure 5. The distribution of resultant velocity Vr at the central cross section of,
x1x2 plane for �=30%, te =0 of case A.

x2

x1

Figure 6. The distribution of resultant velocity Vr at the central cross section of,
x1x2 plane for �=30%, te =2 of case A.

x2

x1

Figure 7. The distribution of resultant velocity Vr at the central cross section of,
x1x2 plane for �=30%, te =4 of case A.

In which, a random magnitude R is selected by a random number with normal distribution, and
� is an intensity parameter and varies from 0–100%. u1,max is the maximum velocity of the mean
velocity distribution. Other related parameters used in cases A and B are tabulated in Tables II
and III, respectively.

Phenomena shown in Figures 5–7 are the developed history of case A and the intensity parameter
of � is 30%. The gray scale indicates the magnitude of the resultant velocity Vr=(u21+u22+u23)

1/2.
In Figure 5, the initial condition that causes the flow to be irregular is just imposed on the original
mean flow. When two eddy turnover times pass away, the flow showed in Figure 6 affected by the
initial condition becomes a wavy flow gradually. Figure 7 shows that, after four large eddy times
pass, the wavy motions of the flow almost disappear and the flow changes into a well-arranged
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x2

x1

Figure 8. The distribution of resultant velocity Vr at the central cross section of,
x1x2 plane for �=40%, te =0 of case A.

x2

x1

Figure 9. The distribution of resultant velocity Vr at the central cross section of,
x1x2 plane for �=40%, te =2 of case A.

x1

x2

Figure 10. The distribution of resultant velocity Vr at the central cross section of,
x1x2 plane for �=40%, te =4 of case A.

flow in which the magnitudes of velocities of the streamwise direction vary smoothly from small
to large in the x2 direction. The flow is similar to a laminar flow. These phenomena indicate that
the flow will decay to an orderly flow when the intensity parameter � mentioned above is not
large enough.

Figures 8–10 show that the intensity parameter � is enlarged and equal to 40%. At the initial
stage, the fluctuations of the flow shown in Figure 8 are more remarkable than those of Figure 5.
In Figure 9, after completion of two eddy turnover times, the flow in the central part becomes
a wavy flow, and near both channel walls turbulent structures are observed gradually. Figure 10
shows that, four eddy turnover times pass away, various magnitudes of velocities distributed in the
whole region are found and the flow almost becomes a fully turbulent flow.
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x1

x3

x2

x3
+

u1(m /s)

Figure 11. The distributions of velocity intensities of u1 for �=40% situation of case A.

In Figure 11, the distributions of velocity intensities of u1 in three different vertical planes
are shown. On the x1x3 plane, the intervals of streaks are about 100�+ which is consistent
with the results of Kazishima [19] under Re� =180 situation. On the x2x3 plane, several shapes
of mushrooms are observed. On the x1x2 plane, eddies generated from the channel walls are
qualitatively observed.

The theoretical [22] and present results of mean velocity profiles close to the channel wall are
indicated in Figure 12. Within x+

2 <10, five computational grids are distributed, then the results
calculated by this study have good agreements with the results of the DNS method conducted by
Kim et al. [17]. The root-mean-square (rms) values of fluctuating velocities of u′

1,rms, u
′
2,rms, and

u′
3,rms and the mean Reynolds stress <u′

1u
′
2> of Kim et al. [17], and the present study are shown

in Figures 13 and 14, respectively. Except for slight differences between the present results and
the results of Kim et al. [17] in the <u′

1> distribution, the other three results of the present study
and Kim et al. [17] are well consistent.

In case B, the mean flow velocity is increased and equal to a Mach number of 0.5. The influences
of compressibility of fluid need to be taken into consideration, however, according to the results of
Lenormand et al. [18]. The results of the mean Reynolds stresses and turbulent intensities are close
to those of the incompressible flow as the mean flow velocity is lower than a Mach number of
0.6. As a result, the rms values of fluctuating velocities of u′

1,rms, u
′
2,rms, and u′

3,rms and the mean
Reynolds stress of <u′

1u
′
2> of the Kim et al. [17] are used to validate these of the present results

obtained from 0.5 Mach number situation, and both the results are shown in Figures 15 and 16.
The results are well consistent with the corresponding result of Kim et al. [17]. The property of
the compressibility of fluid may be a reason to cause a slight difference between both the results
at the summit magnitude.
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Figure 12. The distributions of mean velocities of theoretical and present results of case A.
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Figure 13. The distributions of root-mean-square values of fluctuation velocities.
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Figure 14. The distributions of mean Reynolds stress.
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Figure 15. The distributions of root-mean-square values of fluctuation velocities.

The compressible fluids are compressed due to being in a high-speed situation and the mean
temperatures of fluids are raised and higher than the temperature of the wall, which is constant and
equal to 298.05 k. In Figure 17, accompanying with the increment of x2/0.5h, the dimensionless

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:888–910
DOI: 10.1002/fld



ROE SCHEME WITH PRECONDITIONING METHOD 907

< 
u′ 1u

′ 2 
>

< u′1u′2 >

2

0.5

x

h

0.9

Kim et al. [17]
present results of case B0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

Figure 16. The distributions of mean Reynolds stress.
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Figure 17. Mean temperature profile.

mean temperature <T >/Tw becomes larger gradually. As the magnitude of x2/0.5h is over 0.2,
the distribution of <T >/Tw becomes flat, and this trend is reasonable because its position is
far from the wall. The density of fluid assumed as an ideal gas is inversed to the temperature of

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:888–910
DOI: 10.1002/fld



908 W.-S. FU ET AL.

2

0.5

x

h

1.1

1.05

1

0.95
0 0.2 0.4

Lenormand et al. [18]
present results of case B

0.6 0.8 1

Figure 18. Mean density profile.

x2
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Figure 19. The instant temperatures of case B.

the fluid. The longer the distance the fluid is from the channel wall, the smaller the density of
the fluid becomes, which is shown in Figure 18. Both results shown in the above figures have
good agreements with the results of Lenormand et al. [18]. Usage of a gray scale to indicate the
variations of the fluid temperatures at a certain instant is shown in Figure 19. Corresponding to
the appearances of streaks in the flow field indicated in Figure 11, the alternate arrangements of
the low and high temperatures of fluids caused by the compressible turbulent flow are clearly
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observed on the cross section very close to the channel wall of x1x3 plane. Except for the near-wall
regions, the fluids of which the temperatures are comparatively high occupy other regions of the
channel.

5. CONCLUSIONS

Fully compressible turbulent channel flows obtained by the methods of Roe, preconditioning,
and LES are investigated. In order to stabilize the transient situation and increase the number
of computing grids near the channel walls, the methods of dual time stepping and curved linear
coordinates transformation are adopted. A thorny problem of assignation of initial condition is
successfully overcome by the imposition of random velocity fluctuations on the mean velocity
distribution. The results show that the methods mentioned above effectively improve convergent
efficiency of the above study. Achievements of economizing computing time and improving accu-
racy are gained due to usage of a curved linear coordinates transformation. Under high-speed
situations, the increments of the temperatures of working fluids are remarkable and well consistent
with the previous results.
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